MINIATURE RELAY

1 POLE, 0.5A

(HIGH FREQUENCE SIGNAL SWITCHING)

UM1 SERIES

- FE IRES
- Subr alatu polarized relay
- E slent jh fr zuency characteristics -Insertior is: ax. dB $\left.\begin{array}{l}\text { in } 60 \mathrm{~dB}\end{array}\right\} \begin{aligned} & \text { at } 900 \mathrm{MHz} \\ & \text { Impedance of } \\ & \text { the measuring }\end{aligned}$ -V.S.W.K. $\quad: \quad \neq 1.7$ devices is 75Ω)
- High reliability -r ur ed cu tacts
-Mo ole cont- rold overlay
- Sta unary itact jold clad

- Wide operating range
- DIL pitch terminals
- Plastic sealed type
- Latching type available
- RoHS compliant since date code: 04i . 2 Please see page 7 for more information
- ORDERING INFORMATION
[Example] $\frac{(\mathrm{M})}{(\mathrm{L})}-\frac{\mathrm{D}}{(\mathrm{c})} \frac{12}{(\mathrm{~d})} \frac{\mathrm{W}}{(\mathrm{e})}-\frac{\mathrm{K}}{(\mathrm{f})}$

(a)	Series Name	UM1: UM1 Series
(b)	Operation Function	Nil : Standard type L $:$ Latching type
(c)	Number of Coil	Nil $:$ Single winding type D : Double winding type
(d)	Nominal Voltage	Refer to the COIL DATA CHART
(e)	Contact	W: Bifurcated type (cross bar)
(f)	Enclosure	K : Plastic sealed type

- SPECIFICATIONS

Item			Standard Type	Single Winding Latching Type	Double Winding Latching Type
			UM1-() W-K	UM1L-() W-K	UM1L-D () W-K
Contact	Arrangement		1 form C (SPDT)		
	Material		Gold clad (stationary contact), gold plate (movable contact)		
	Style		Bifurcated (cross bar)		
	? esistance (initial)		Maximum $100 \mathrm{~m} \Omega$		
	Rat' (resistive)		10 mA 24 VDC 1 W (at 900 MHz)		
	$\begin{aligned} & \text { _im arrying Current } \\ & \text { Maxin } n \text { Switching Power } \end{aligned}$		0.5 A		
			1 W (DC) 10 W (at 900 MHz)		
	K >xim IS . .mis Voltage		30 VDC		
	Maximum witching ${ }^{\sim}$ - ${ }^{\text {nt }}$		100 mA		
	Minimum , vitchi Load*		0.01 mA 10 mVDC		
Excellent Aigh Frequency istics	Isolation		iinimum 60 dB (at 900 MHz), impedance of the measuring devices is 75Ω		
	Insertion Loss		Ma Ium 1 dB (at 900 MHz), impedance of the measuring devices is 75Ω		
	V.S.W.R.		- aximur 2 (at 900 MHz), impedance of the measuring devices is 75Ω		
Coil	Nominal Power (at $20^{\circ} \mathrm{C}$)		$200{ }^{+} 20 \mathrm{mV}$	200 mW	400 mW
	Operate Power (at $20^{\circ} \mathrm{C}$)		15.0110	100 mW	200 mW
	Operating Temperature		$-30^{\circ} \mathrm{C}{ }^{+} 30^{\circ} \mathrm{C}$-1' ros^{+1}		$-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ (no frost)
Time Value	Operate (at nominal voltage)		Maximum 6 s M imum 6 ms (set)		
	Release (at nominal voltage)		Maximum $5 \mathrm{~ms} \quad$.axim' 76 ms (reset)		
Life	Mechanical		1×10^{6} operations mi num		
	Electrical		3×10^{5} operations minirı.... (at inal luad)		
Other	Vibration Resistance	Misoperation	10 to 55 Hz (double amplitud , f 3.3 mm		
		Endurance	10 to 55 Hz (double amplitude of. $.0 r$		
	Shock Resistance	Misoperation	$500 \mathrm{~m} / \mathrm{s}^{2}$ ($11 \pm 1 \mathrm{~ms}$)		
		Endurance	$1,000 \mathrm{~m} / \mathrm{s}^{2}(6 \pm 1 \mathrm{~ms})$		
	Weight		Approximately 4 g		

*1 Minimum switching loads mentioned above are reference values. Please perform the confirmation t, it , ith the actual load before production since reference values may vary according to switching frequencies, environmenimir nr tions and expected reliability levels.

■ INSULATION

Item	Standard	Single latch
Isolation (initial)	Minimum 1,000 M Ω (at 500VDC)	Double latch
Dielectric Strength	$500 \mathrm{VAC} 1 \mathrm{~min} .$, (open contact / contact and shield terminals)	
	$1,000 \mathrm{VAC} \mathrm{1} \mathrm{min.}, \mathrm{(coil} \mathrm{contact/} \mathrm{coil} \mathrm{and} \mathrm{shield} \mathrm{terminals)}$	

- COIL DATA CHART

	MODEL	Nominal voltage	Coil resistance $\text { (} \pm 10 \%)$	Must operate voltage*1	Must release voltage*1	Nominal power
	UM1-1.5 W-K	1.5 VDC	11.2Ω	+1.05 VDC	+0.08 VDC	200 mW
	UM1- 3 W-K	3 VDC	45Ω	+2.1 VDC	+0.15 VDC	200 mW
	UN ${ }^{1} 5 \mathrm{~W}-\mathrm{K}$	4.5 VDC	101Ω	+3.15 VDC	+0.23 VDC	200 mW
	11- W-K	5 VDC	125Ω	+3.5 VDC	+0.25 VDC	200 mW
	UM ${ }^{1} 6 \mathrm{~V}$	6 VDC	180Ω	+4.2 VDC	+0.3 VDC	200 mW
	1-	9 VDC	405Ω	+6.3 VDC	+0.45 VDC	200 mW
	UM1-12 W-K	12 VDC	720Ω	+8.4 VDC	+0.6 VDC	200 mW
	UM1-18 'K	i VDC	1,620 Ω	+12.6 VDC	+0.9 VDC	200 mW
	UM1-24 W-K		2,880 Ω	+16.8 VDC	+1.2 VDC	200 mW
	UM1-48 W-K	$+8 \mathrm{VD}^{\prime}$	10,472 Ω	+33.6 VDC	+2.4 VDC	220 mW

Note: *1 Specified values are sun, _ut to r s wav voltage. All values in the table are measured at $j^{\circ} \mathrm{C}$

	MODEL	Nominal voltage	Coil resistance $\text { (} \pm 10 \%)$	Set voltage*1	Reset voltage*1	Nominal power
	UM1L- 1.5 W-K	1.5 VDC	11.2Ω	+1.05 VDC	-1.05 VDC	200 mW
	UM1L- $3 \mathrm{~W}-\mathrm{K}$	3 VDC	45Ω	+2.1 VDC	-2.1 VDC	200 mW
	UM1L- 4.5 W-K	4.5 VDC	101Ω	+3.15 VDC	-3.15 VDC	200 mW
	UM1L $5 \mathrm{~W}-\mathrm{K}$	5 VDC	125Ω	+3.5 VDC	-3.5 VDC	200 mW
	UN - $\mathrm{W}-\mathrm{K}$	6 VDC	180Ω	+4.2 VDC	-4.2 VDC	200 mW
	11L- W-' $\mathrm{W}^{\text {- }}$	9 VDC	405Ω	+6.3 VDC	-6.3 VDC	200 mW
	12	12 VDC	720Ω	+8.4 VDC	-8.4 VDC	200 mW
	UM1L- W-K	18 VDC	1,620 Ω	+12.6 VDC	-12.6 VDC	200 mW
	UM1L- $2^{\prime \prime}$ W-K	VDC	2,880 Ω	+16.8 VDC	-16.8 VDC	200 mW
	UM1L- 48 W-,	48 VDC	11,520 Ω	+33.6 VDC	-33.6 VDC	200 mW
	UM1L-D1.5 W-K	1 DC	P 5.6Ω	+1.05 VDC		400 mW
			S 5.6Ω		+1.05 VDC	
	UM1L-D 3 W-K	$\mathcal{C} \quad \frac{22.5 \Omega}{<.5 \Omega}$		+2.1 VDC		400 mW
					+2.1 VDC	
	UM1L-D4.5 W-K	4.5 VDC	J.6s.	+3.15 VDC		400 mW
			$50.6{ }^{\text {r }}$		+3.15 VDC	
	UM1L-D 5 W-K	5 VDC	P $6{ }^{-}$	+3.5 VDC		400 mW
			S 62.5.		+3.5 VDC	
	UM1L-D 6 W-K	6 VDC	$\mathrm{P} \quad 90 \Omega$	VD		400 mW
			S 90Ω		+4.2 VDC	
	UM1L-D 9 W-K	9 VDC	P 202.5	VDr		400 mW
			S 202.5Ω		VDC	
	UM1L-D 12 W-K	12 VDC	P 360Ω	+8.4 VD		400 mW
			S 360Ω		- VDC	
	UM1L-D 18 W-K	18 VDC	P 810Ω	+12.6 VDC		400 mW
			S 810Ω		+12.6 JDC	
	UM1L-D 24 W-K	24 VDC	P 1,440 Ω	+16.8 VDC		400 mW
			S 1,440 Ω		+16.8 VDC	
	UM1L-D 48 W-K	48 VDC	P 5,760 Ω	+33.6 VDC		30, W
			S 5,760 Ω		+33.6 VDC	

Note: *1 Specified values are subject to pulse wave voltage.
All values in the table are measured at $20^{\circ} \mathrm{C}$.

CHARACTERISTIC DATA

REFERENCE DATA

- DIMENSIONS

- Dimensions

Sci.ım=,s
(Bottom view)
UM1, UM1L type (Non-latching type, single winding latching type)

UM1L-D type (Double winding latching type)

- PC board mounting hole layout (Bottom view)

RoHS Compliance and Lead Free Relay Information

1. General Information

- Relays produced after the specific date code that is indicated on each data sheet are lead-free now. All our signal and power relays are lead-free. Please refer to Lead-Free Status Info. (http://www.fujitsu.com/us/downloads/MICRO/fcai/relays/lead-free-letter.pdf)
- Lead fr solder plating currently used in relays is $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$. From February 2005 forward Sn- ${ }^{-}$cu- will be used for FTRB3 and FTR-B4 series relays.
- A^{\prime}.gnal $d p$ yer relays also comply with RoHS. Please refer to individual data she .t- .ela nat are RoHS compliant do not contain the 6 hazardous materials above the threshold level that are re cter ,y h , HS directive (lead, mercury, cadmium, chromium IV, PBB, PBDE and DecaBDE).
- It has beun verifi ' that ısing lead-free relays in leaded assembly process will not cause any problems (cu nD= Je’
- "LF" is marked on é louter $\Rightarrow-$ ' 'nner carton. (No marking on individual relays).

2. Recommended L ad ${ }^{\boldsymbol{V}}$ ef older Profile

- Recommended solder paste Sn-3 ig .5r

Solder condition

Flow Solder condition:

Pre-heating: maximum $120^{\circ} \mathrm{C}$
Soldering: dip within 5 sec . at
$260^{\circ} \mathrm{C}$ solder bath

Solder by Soldering Iron: Soldering Iron
 Temperature: maximum $360^{\circ} \mathrm{C}$
 Duration: maximum 3 sec .

We highly recommend that you confirm your actual solder conditions

3. Moisture Sensitivity

- Moisture Sensitivity Level standard is not applicable to electromechanical relays.

4. Tin Whisker

- Dipped SnAgCu solder is known as low risk tin whisker. No considerable whisker length was found by our in house test.

Fujitsu Components International Headquarter Offices

Japan
Fujitsu Component Limited
Gotanda-Chuo Building
3-5, Higashigotanda 2-chome, Shinagawa-ku
Tokyo 141, Japan
Tel: (81-3) 5449-7010
Fax: (81-3) 5449-2626
Email: p \quad ๆ@ft.ed.fujitsu.com
Web: v.fcl. tsu.com/en/
r. 1 and r.har ica
F 'su C' uner' nerica, Inc.
250 L .ober ave
Sunnyvale, C +089 ड.A.
Tel: (1-408) ,-4900
Fax: (1-408) 745-4970
Email: componer, Dus tsu
Web: http://www.fujlu um/ ervices/edevices/components/

Europe

Fujitsu Components Europe B.V.
Diamantlaan 25
2132 WV Hoofddorp
Netherlands
Tel: (31-23) 5560910
Fax: (31-23) 5560950
Email: info@fceu.fujitsu.com
Web: emea.fujitsu.com/components/
Asia Pacific
Fujitsu Components Asia Ltd.
102E Pasir Panjang Road
\#01-01 Citilink Warehouse Complex
Singapore 118529
Tel: (65) 6375-8560
Fax: (65) 6273-3021
Email: fcal@fcal.fujitsu.com
Web: http://www.fujitsu.com/sg/services/micro/components/
©2008 Fujitsu Components A. arice c. All r its reserved. All trademarks or registered trademarks are the property of their respective owners.

Fujitsu Components America or its aftlıucs do a rrar lat the content of datasheet is error free. In a continuing effort to improve our products Fujitsu Components America, Inc.r s a a^{+}res 'e the right to change specifications/datasheets without prior notice.
Rev. December 23, 2008.

